Ice composition evidence for the formation of basal ice from lake water beneath a cold-based Antarctic glacier

R. D. Lorrain, S. J. Fitzsimons, M. J. Vandreghen, M. Stévenard

1 Département des Sciences de la Terre et de l’Environnement, Université Libre de Bruxelles, B-1050 Brussels, Belgium
2 Department of Geography, University of Oslo, Bygdøy, New Zealand
3 Laboratoire des Sciences du Climat et de l’Environnement, Laboratoire mixte CEA-CNRS-CE Saclay, F-91680 Gif-sur-Yvette Cedex, France

ABSTRACT: Entrainment of debris by cold-based glaciers having basal temperatures as low as −17 °C can be observed in the Dry Valleys of south Victoria Land, Antarctica. The classical models developed to explain debris incorporation at the glacier base are inappropriate in such cases, since the basal temperature is well below the freezing point. An alternative model, based on the presence of ice-marginal lakes, has recently been proposed by one of the authors (S.J.F.). In this model, transient wet-base conditions can occur as ice flows onto the uniformly sedimented lake bottom, creating conditions favorable to the entrainment of sediments and to ice accretion by water freezing.

Here we describe a situation where this model is consistent with an ice-composition study of the basal part of Snee Glacier, Taylor Valley. The stable isotope composition indicates that water freezing, most probably lake water, plays a major role in the formation of the basal ice layers. Total gas content of this basal ice is considerably depleted when compared to meteoric glacier ice, in accordance with a rejection mechanism during freezing. Its gas composition, strongly enriched in CO₂, is also indicative of the presence of a former liquid phase.

INTRODUCTION

Among the glaciers flowing down the sides of the Dry Valleys of Victoria Land, Antarctica, those which are not confined to the valley sides but reach the valley floor show thick sequences of debris layers incorporated at their base. Although these glaciers are cold-based (temperature lower than −17 °C), those with ice-marginal lakes show well-preserved stratified sedimentary structures obviously entrained within their basal part (Fig. 1). Observations made in a 25 m long tunnel dug at the bed of one of these glaciers (Fitzsimons and others, in press) confirm that many basal ice structures visible at the ice margin represent extensions of subglacial structures observable 100 m up-glacier of the margin.

Recently, one of us (Fitzsimons, 1996) proposed a model that explained the formation of lenses black mirrors at the margin of glaciers which flow into lakes, with an unfrozen bed (Fig. 2). Such lakes are common in the Dry Valleys (Wilson and others, 1974; Cartwright and Harris, 1983; China, 1993). This model takes into account the change in position of the 0°C isotherm when a glacier is flowing into a lake. Transient wet-based conditions occur as ice flows onto uniformly sedimented lake bottom. Water can be released near the glacier sole, at the lake margin, and basal freezing can occur since glacier ice acts as a cold source. Ice accretion and basal incorporation of sediment layers take place in such conditions. Rising flow vectors, characteristic of the ablation zone of the glacier, result in the upward movement of the accreted ice and debris.

However, the processes at the glacier-lake interface, by which debris incorporation is occurring, have not been identified precisely. In this paper, we study a situation where this model is evaluated by an ice-composition study.

SITE DESCRIPTION

Snee Glacier is a 5 km long alpine glacier that descends from 1750 m on the Argard Range and flows across the floor of the Taylor Valley (Fig. 3). At the terminus, the right side of the glacier flows up the Taylor Valley and forms a 10-20 m high cliff overtopping an ice and debris apron adjacent to Lake Poppleswell (Fig. 4). As with all the other alpine glaciers of the Dry
Valleys, the whole glacier is below the pressure-sustaining point (surtseyan, 1998) and has a basal temperature of 4°C, thus is frozen. The surface of the glacier is debris-rich, apart from a few boulders coming from the valley sides. The debris is visible, revealed by excavation below the basal ice, consists of frozen planar-bedded or cross-bedded sand and also massive unstratified sand containing layers of fine gravels.

Direct observation and excavation of the ice debris apron, from its base to its upper limit with the vertical part of the ice cliff, reveals a 3-5-m thick series of ice layers of variable thickness (1 cm to a few dm), interbedded with sand and fine gravel beds. (Fig. 5). Occasionally, a thin organic mud layer or an algal layer (a few mm thick), is associated with a sand layer. The whole-stacked sequence is dipping from L2–22° in an up-glacier direction. The particle-size characteristics of the sediment are similar to those of the adjacent lacustrine environment (Bressan, 1996).

The ice layers show different facies which fit the classification scheme developed by Sharp and others (1991). The main components of the basal ice zone are basal-dispersed, bedload-laminated, basal-cleave and basal-sediment facies that are overlain by the amber ice facies, the latter being the only one previously reported in the Dry Valleys, at the base of Morsure Glacier (Hodgsworth, 1998). Some blocks of undisturbed lacustrine sediments are included within the sequence, especially in the upper part of the apron. The well-preserved primary sedimentary structures of these blocks suggest the sediments were frozen during entainment (Fig. 1). This layer is thus very different from the ice cliff above, which consists of bubble-rich glacier ice devoid of visible particles.

SAMPLE DESCRIPTION AND TREATMENT

The excavation made in the apron permitted sampling of many of the ice beds present in the sequence. All samples were taken with the aid of a chain saw equipped with tungsten carbide teeth. Blocks about 0.5 cm wide and 30–40 cm high were taken along the vertical sequence, wrapped in polyethylene bags, and immediately stored in a freezer, installed in the nearby field camp.

Additionally, seven shallow ice cores (1 m long) were retrieved with a SIPRE-type ice auger along a longitudinal profile from the upper surface of Snee Glacier. Finally, a 1 m
long ice core was also taken from the ice cover of adjacent Lake Poppeswell.
All ice samples were kept at -18 °C and transferred to the cold laboratory in ice blocks. Temperature reggers were used to monitor the samples from their initial storage in the field to their laboratory storage; the temperature of the samples did not rise above -18 °C. The laboratory analyses consisted of measurement of stable isotopes (δD and δ18O), total gas content and gas composition (O₂, N₂, CO₂).
All the samples taken with the chain saw were re-sawn in the cold laboratory with a diamond-wire saw without any melting. A slice, 2 cm thick, was cut parallel to each side and discarded to avoid contamination. Then, 85 subsamples of 5 g were cut from the different layers present in the basal ice blocks for isotopic analyses. For gas analyses, a lower number of subsamples (5-9 g each) were cut at the same level as some of the samples taken for the isotopic analyses. The same type of “re-sampling” was carried out on the seven ice cores retrieved from the glacier surface: 25 samples were cut for isotopic composition and one for gas analysis.
The isotopic analyses were performed at the Sclucy Nuclear Research Center in France. Results are expressed in δ units normalized to Standard Mean Ocean Water. Precision of the measurements is ±0.35‰ on δD and ±0.1‰ on δ18O.
The gas analyses were performed in Brussels. Local gas content was determined by a melting-refreezing method, using a Rogerle pump. This method has been fully described by Raynaud and others (1988) and Blunier and others (1999). The relative precision is better than 5%. Martorana and others, 1989. Gas composition was measured using a dry extraction technique at -35 °C in a cold room and a Varian 3200 gas chromatograph; using a procedure fully described by Raynaud and others (1982) and Bernold and others (1985). The precision of the measurements is 0.5‰ for CO₂ and 0.4‰ for O₂ and N₂.

RESULTS AND COMMENTS
Basal ice clearly differs from glacier ice as far as its isotopic composition is concerned. Placed on a graph in which δ18O is plotted against δD (Fig. 6), the 25 glacier ice samples from the glacier surface show a linear relationship with a slope S = 8.1. The line has the equation:

\[\delta D = 8.1 \delta^{18}O + 9.4 \]

(1)

and can be considered as the local Meteoric Water Line as defined by Craig (1961). The world Meteoric Water Line has been recently redefined by Rozanski and others (1985) as having the equation:

\[\delta D = 8.11 \delta^{18}O + 10.35 \]

(2)

Such a relationship derived from fresh precipitation is generally true for glacier ice that has not undergone isotopic change since its formation in the accumulation area. By contrast, the 85 ice samples taken from the apron section show a linear relationship with a slope S = 3.4. The regression line has the equation:

\[\delta D = 5.4 \delta^{18}O - 79 \]

(3)

This slope is typical for ice due to water freezing as explained by Jouzel and others (1982) and Souchez and Jouzel (1984). These authors have shown theoretically and experimentally that progressive freezing of a water reservoir induces changes in the isotopic composition of successively formed ice increments. The more negative values correspond to the ice formed when the freezing front draws near to the end of the reservoir. The evolution in δD and δ18O during freezing defines a so-called “freezing slope” in a δD-δ18O diagram which constitutes a specific isotopic signature of ice produced by water freezing. This slope can be calculated by the following equation:

\[S = \frac{\delta D - \delta D_{\text{apron}}}{\delta^{18}O - \delta^{18}O_{\text{apron}}} \]

(4)

where \(\delta D \) is the404D composition of the parent water, \(\delta^{18}O \) is the δ18O composition, \(\alpha \) and \(\beta \) are the values of the ice-water equilibrium fractionation coefficients for deuterium (taken as 1000) and for oxygen (taken as 1003), respectively.

If, as suggested by Souchez and Jouzel (1984), the values at the intersection of the two regression lines are taken as the isotopic composition of the parent water (δ18O = -32.71‰ and δD = -253.6‰), the slope calculated from Equation (4) for a freezing process is 3.4. If water sampled in Lake Poppeswell, adjacent to the glacier, is taken as parent water (δ18O = -29.56‰ and δD = -253.5‰), the calculated slope is 3.5. These two calculated slopes are in close agreement with the slope of 3.4 obtained from the basal ice samples of the apron of Suex Glacier. Co-isotopic analyses of this ice thus indicate that water freezing plays a major role in the build-up of the basal ice sequence of Suex Glacier.

Results from gas analyses give further arguments. Basal
ice clearly differs from surface glacier ice in both gas content and gas composition (Table 1).

Surface glacier ice has a total gas content close to that typical for polar mesoic ice. This value is about 0.0001 g cm$^{-2}$ of ice at standard temperature and pressure conditions. Values between 0.05 and 0.10 cm$^{-3}$ have been reported in glacier ice from polar ice cores (Martines and others, 1982). Surface ice has a CO$_2$ concentration slightly higher than the atmospheric one from the pre-industrial period (ca. 280 ppmv), and its O$_2$: N$_2$ ratio is nearly the atmospheric one (0.236). These characteristics point to the possibility that small quantities of superficial meltwater have percolated into the firm and have refrozen as a thin layer of ice covering cold snow grains (Stauffer and others, 1985).

By contrast, the basal ice has a strikingly lower total gas content, a very much higher CO$_2$ concentration, and a O$_2$: N$_2$ ratio generally higher than atmospheric values. These characteristics indicate that this ice formed, at least partly, from the freezing of liquid water, a process that causes gas rejection and preferential incorporation of CO$_2$. As compared to the situation in the atmosphere, air dissolved in water at 0°C and atmospheric pressure has a different composition. 20000 ppmv of CO$_2$ and O$_2$: N$_2$ = 1.40 because of the higher solubility of CO$_2$ in and O$_2$ compared to N$_2$ (Stauffer and others, 1985).

In the present case, the CO$_2$ content reaches much higher values (225000 ppmv). To our knowledge, the highest value of CO$_2$ content in glaciers ever published was 150000 ppmv, which was reported by Souchez and others (1995a, b) for basal glacial ice from the Greenland Icecore Project (GRIP) core in central Greenland.

The results of this study show that the O$_2$: N$_2$ ratios reach values as high as 0.360 and are associated with high CO$_2$ concentrations. This situation is completely different from that described at the base of the GRIP core where high CO$_2$ concentrations are related to low O$_2$: N$_2$ ratios. The latter relationship implies that oxidation of organic matter has produced carbon dioxide since this process is responsible for a lowering of the oxygen content. Our case, on the contrary, precludes this process. Progressive freezing of a water reservoir must be considered.

Results of gas analyses from natural ice testified by water freezing are very scarce in the literature and deal with one or two gases only. However, the O$_2$: N$_2$ ratio has been studied by Craig and others (1992) in the water and in the bubbles of lake ice from Lake Hoare, situated in Taylor Valley not far from Swiss Glacier (Fig. 3). These authors explain that gases become saturated in the region immediately below the newly forming ice during freezing of lake water until bubbles nucleate and form a gas phase. As freezing proceeds, gas is transferred from solution to the bubbles until finally the bubbles are evacuated in the ice. In the case of Lake Hoare, the O$_2$: N$_2$ ratios measured in such ice bubbles range from 0.48-0.51. In the case of the ice core of Lake Papworth, sampled in the present study (Table 1), this ratio is even lower (0.238). As stated above, the equilibrium value of the O$_2$: N$_2$ ratio for air dissolved in water at 0°C and atmospheric pressure is 0.26, but this is not the case in ice formed by water freezing since O$_2$ and N$_2$ do not diffuse at the same rate away from the advancing freezing front. At 0°C the O$_2$ diffusion coefficient in ice is 2.08×10^{-7} m2 s$^{-1}$ instead of 1.68×10^{-5} m2 s$^{-1}$ for N$_2$. The higher values reached in the Lake Hoare ice could be explained by the local production of oxygen by photosynthesis which, following Craig and others (1992), is responsible for 14% of the O$_2$ input of the lake. Different freezing rates could also play a role since they affect the O$_2$: N$_2$ ratio in the boundary layer situated at the ice-water interface. More work is clearly needed to understand all aspects of the gas composition of the basal ice from Swiss Glacier, but the data cannot be explained without considering freezing of liquid water.

CONCLUSION

The stable isotope composition, the total gas content and the gas composition of the basal ice from Swiss Glacier indicate that water (most probably lake water) plays a major role in the formation of the stacked sequence of ice and sediment layers recorded at the base. This is consistent with the previously proposed model of debris entrainment by cold-beded glaciers that flow into lakes. This model states that transient well-based conditions occur as ice flows into the unfrozen sediments of the lake bottom, creating conditions favorable for the entainment of sediments and for ice accretion by water freezing.

Table 1. Results of gas analyses of ice samples from Swiss Glacier and from Lake Papworth

<table>
<thead>
<tr>
<th>Ice type</th>
<th>Sample number</th>
<th>Depth from surface or from the lowest glacier ice to basal ice</th>
<th>Total gas content</th>
<th>CO$_2$</th>
<th>O$_2$</th>
<th>N$_2$</th>
<th>O$_2$: N$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cm</td>
<td>cm3 g$^{-1}$</td>
<td>ppmv</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Glacier ice</td>
<td>Su 4.5 b</td>
<td>101-140</td>
<td>0.0701</td>
<td>144</td>
<td>28.05</td>
<td>71.96</td>
<td>0.27</td>
</tr>
<tr>
<td>Basal ice</td>
<td>Su 1.5 b</td>
<td>-56</td>
<td>0.0280</td>
<td>222900</td>
<td>26.00</td>
<td>74.02</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Su 4.5</td>
<td>-83</td>
<td>0.0280</td>
<td>5641</td>
<td>21.87</td>
<td>78.13</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Su 1.5</td>
<td>-83</td>
<td>0.0277</td>
<td>105821</td>
<td>26.10</td>
<td>73.90</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Su 1.35 b</td>
<td>-305</td>
<td>0.0103</td>
<td>614</td>
<td>21.29</td>
<td>78.71</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Su 1.9 b</td>
<td>-444</td>
<td>0.0106</td>
<td>1070</td>
<td>19.60</td>
<td>80.40</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Su 1.5</td>
<td>28</td>
<td>0.0107</td>
<td>5546</td>
<td>21.32</td>
<td>78.68</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Su 1.6 a</td>
<td>-31</td>
<td>0.0104</td>
<td>1509</td>
<td>19.31</td>
<td>80.69</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Su 1.6 b</td>
<td>-60</td>
<td>0.0104</td>
<td>1509</td>
<td>19.31</td>
<td>80.69</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Su 1.6 a</td>
<td>-164</td>
<td>0.0104</td>
<td>1509</td>
<td>19.31</td>
<td>80.69</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Su 1.6 b</td>
<td>-317</td>
<td>0.0105</td>
<td>177</td>
<td>22.58</td>
<td>77.42</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Su 1.6 a</td>
<td>-353</td>
<td>0.0105</td>
<td>177</td>
<td>22.58</td>
<td>77.42</td>
<td>0.29</td>
</tr>
<tr>
<td>Lake ice</td>
<td>Su 1.6 b</td>
<td>-56</td>
<td>0.0105</td>
<td>177</td>
<td>22.58</td>
<td>77.42</td>
<td>0.29</td>
</tr>
</tbody>
</table>